Section 1.11 Homework

From Grad Wiki
Jump to navigation Jump to search

7. Show that two 2-dimensional subspaces of a 3-dimensional subspace must have nontrivial intersection.

Proof:
(by contradiction) Suppose Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M,N} are both 2-dimensional subspaces of a 3-dimension vector space and assume that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M,N} have trivial intersection. Then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M+N} is also a subspace of , and since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M,N} have a trivial intersection . But then:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \dim(M+N)=\dim M+\dim N=2+2} . However subspaces must have a smaller dimension than the whole vector space and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 4>3} . This is a contradiction and so Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M,N} must have trivial intersection.


8. Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M_{1},M_{2}\subset V} be subspaces of a finite dimensional vector space . Show that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \dim(M_{1}\cap M_{2})+\dim(M_{1}\cup M_{2})=\dim M_{1}+\dim M_{2}} .

Proof:
Define the linear map Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle L:M_{1}\times M_{2}\to V} by . Then by dimension formula Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \dim(M_{1}\times M_{2})=\dim \ker(L)+\dim {\text{im}}(K)} First note that in general Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \dim(V\times W)=\dim V+\dim W} . This fact I won’t prove here but is why Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \dim \mathbb {R} ^{2}=1+1=2} . Now Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \ker(L)=\{(x_{1},x_{2}):L(x_{1},x_{2})=0\}} . That is, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (x_{1},x_{2})\in \ker(L)} iff Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{1}-x_{2}=0\Rightarrow x_{1}=x_{2}} . But since and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{2}\in M_{2}} and they are actually the same vector, , then we must have Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{1}=x_{2}\in M_{1}\cap M_{2}} . That says that the elements of the kernel are ordered pairs where the first and second component are equal and must be in Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M_{1}\cap M_{2}} . Then we can write Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \ker(L)=\{(x,x):x\in M_{1}\cap M_{2}\}} . I claim that this is isomorphic to Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M_{1}\cap M_{2}} . To prove this consider the function Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \phi :M_{1}\cap M_{2}\to \ker(L)} as . This map Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \phi } is an isomorphism which you can check. Since we have an isomorphism, the dimensions must equal and so Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \dim(M_{1}\cap M_{2})=\dim(\ker(L))} . Finally let us examine Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{im}}(L)=\{x_{1}-x_{2}:x_{1}\in M_{1},x_{2}\in M_{2}\}} . I claim that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{im}}(L)=M_{1}+M_{2}} . Note, this is equal and not just isomorphic. To see this, we note that if Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{2}\in M_{2}} then by subspace property. So then any Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{1}+x_{2}\in M_{1}+M_{2}} is also equal to Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{1}-(-x_{2})\in {\text{im}}(L)} . So these sets do indeed contain the exact same elements. That means Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \dim(M_{1}+M_{2})=\dim {\text{im}}(L)} . Putting this all together gives:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \dim M_{1}+\dim M_{2}=\dim(M_{1}\times M_{2})=\dim \ker(L)+\dim {\text{im}}(L)=\dim(M_{1}\cap M_{2})+\dim(M_{1}+M_{2})} .


16. Show that the matrix
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{bmatrix}0&1\\0&1\end{bmatrix}}} as a linear map satisfies Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \ker(L)={\text{im}}(L)} .

Proof:
The matrix is already in eschelon form and has one pivot in the second column. That means that a basis for the column space which is the same as the image would be the second column. In other words, . Now for the kernel space. Writing out the equation Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Lx=0} reads Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0x_{1}+1x_{2}=0} or in other words Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{2}=0} . Then an arbitrary element of the kernel Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}}=x_{2}{\begin{bmatrix}1\\0\end{bmatrix}}} . So again Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \ker(L)={\text{Span}}\left({\begin{bmatrix}1\\0\end{bmatrix}}\right)} . In other words, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \ker(L)={\text{im}}(L)} .


17. Show that
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{bmatrix}0&0\\\alpha &1\end{bmatrix}}} defines a projection for all . Compute the kernel and image.

Proof:
First I will deal with the case Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha =0} . In this case the matrix is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{bmatrix}0&0\\0&1\end{bmatrix}}} and we see by the procedure in the last problem that: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{im}}(L)={\text{Span}}\left({\begin{bmatrix}0\\1\end{bmatrix}}\right)} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \ker(L)={\text{Span}}\left({\begin{bmatrix}1\\0\end{bmatrix}}\right)} .


Now for the case Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha \neq 0} . Then we still have only one pivot and either column can form a basis for the image. Using the second column makes it look nicer, and is the same as the previous case. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{im}}(L)={\text{Span}}\left({\begin{bmatrix}0\\1\end{bmatrix}}\right)} . The difference is when we write out the equation to find the kernel, we get Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha x_{1}+x_{2}=0} . With Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{2}} as our free variable this means Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{1}=-{\frac {1}{\alpha }}x_{2}} so that a basis for the kernel is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ker(L) = \text{Span} \left ( \begin{bmatrix} -\frac{1}{\alpha} \\ 1 \end{bmatrix} \right )} .