Difference between revisions of "031 Review Part 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 70: Line 70:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|From the matrix &nbsp;<math style="vertical-align: -4px">B,</math>&nbsp; we see that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; contains pivots in Column 1 and 2.
 +
|-
 +
|So, to obtain a basis for &nbsp;<math style="vertical-align: -4px">\text{Col }A,</math>&nbsp; we select the corresponding columns from &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|Hence, a basis for &nbsp;<math style="vertical-align: -1px">\text{Col }A</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          -1 \\
 +
          5
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -4  \\
 +
          2 \\
 +
          -6
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 +
 
|}
 
|}
  

Revision as of 10:34, 10 October 2017

Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for    and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  


Foundations:  
1. For a matrix    the rank of    is
2.    is the vector space spanned by the columns of  
3.    is the vector space containing all solutions to  


Solution:

(a)

Step 1:  
From the matrix    we see that    contains two pivots.
Therefore,

       

Step 2:  
By the Rank Theorem, we have

       

Hence,  

(b)

Step 1:  
From the matrix    we see that    contains pivots in Column 1 and 2.
So, to obtain a basis for    we select the corresponding columns from  
Hence, a basis for    is
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam