Difference between revisions of "009C Sample Final 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<span class="exam"> For each of the following series, find the sum if it converges. If it diverges, explain why.
 
<span class="exam"> For each of the following series, find the sum if it converges. If it diverges, explain why.
  
::<span class="exam">a) <math>4-2+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots</math>
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -14px">4-2+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots</math>
  
::<span class="exam">b) <math>\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 2 Solution|'''<u>Solution</u>''']]
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009C Sample Final 2, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)'''
 
|-
 
|&nbsp;&nbsp; '''(b)'''
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:22, 2 December 2017

For each of the following series, find the sum if it converges. If it diverges, explain why.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam