009C Sample Final 2, Problem 2 Detailed Solution

From Grad Wiki
Jump to navigation Jump to search

For each of the following series, find the sum if it converges. If it diverges, explain why.

(a)  

(b)  


Background Information:  
1. The sum of a convergent geometric series is  
        where    is the ratio of the geometric series
        and    is the first term of the series.
2. The  th partial sum,    for a series    is defined as

       


Solution:

(a)

Step 1:  
Let    be the  th term of this sum.
We notice that
          and  
So, this is a geometric series with  
Since    this series converges.
Step 2:  
Hence, the sum of this geometric series is

       

(b)

Step 1:  
We begin by using partial fraction decomposition. Let
       
If we multiply this equation by    we get
       
If we let    we get  
If we let    we get  
So, we have
       
Step 2:  
Now, we look at the partial sums,    of this series.
First, we have
       
Also, we have
       
and
       
If we compare    we notice a pattern.
We have
       
Step 3:  
Now, to calculate the sum of this series we need to calculate
       
We have
       
Since the partial sums converge, the series converges and
the sum of the series is  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam