Difference between revisions of "031 Review Part 2, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
<span class="exam">If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix such that &nbsp;<math style="vertical-align: -4px">AA^T=I,</math>&nbsp; what are the possible values of &nbsp;<math style="vertical-align: 0px">\text{det }A?</math>
 
<span class="exam">If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix such that &nbsp;<math style="vertical-align: -4px">AA^T=I,</math>&nbsp; what are the possible values of &nbsp;<math style="vertical-align: 0px">\text{det }A?</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 9: Line 8:
 
|'''1.''' &nbsp;<math style="vertical-align: -5px">\text{det }(AB)=(\text{det }A)(\text{det }B)</math>
 
|'''1.''' &nbsp;<math style="vertical-align: -5px">\text{det }(AB)=(\text{det }A)(\text{det }B)</math>
 
|-
 
|-
|'''2.''' &nbsp;<math style="vertical-align: 0px">\text{det }I=n</math>
+
|'''2.''' &nbsp;<math style="vertical-align: 0px">\text{det }I=1</math>
 
|-
 
|-
 
|'''3.''' &nbsp;<math style="vertical-align: 0px">\text{det }A^T=\text{det }A</math>
 
|'''3.''' &nbsp;<math style="vertical-align: 0px">\text{det }A^T=\text{det }A</math>
Line 53: Line 52:
 
|&nbsp;&nbsp; &nbsp; &nbsp; <math>\text{det }A=\pm 1</math>
 
|&nbsp;&nbsp; &nbsp; &nbsp; <math>\text{det }A=\pm 1</math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:40, 15 October 2017

If    is an    matrix such that    what are the possible values of  

Foundations:  
Recall:
1.  
2.  
3.  


Solution:

Step 1:  
Using the facts in the Foundations section, we have

       

Step 2:  
Taking the square root of both sides of the equation
we obtain  


Final Answer:  
      

Return to Review Problems