Difference between revisions of "031 Review Part 2, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">If <math style="vertical-align: 0px">A</math> is an <math style="vertical-align: 0px">n\times n</math> matrix such that <math style="vertical-align: -4px">AA^T=I,</math> what are the possible values of <math style="vertical-align: 0px">\text{det }A?</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |Recall: |
+ | |- | ||
+ | |'''1.''' <math style="vertical-align: -5px">\text{det }(AB)=(\text{det }A)(\text{det }B)</math> | ||
+ | |- | ||
+ | |'''2.''' <math style="vertical-align: 0px">\text{det }I=1</math> | ||
+ | |- | ||
+ | |'''3.''' <math style="vertical-align: 0px">\text{det }A^T=\text{det }A</math> | ||
|} | |} | ||
Line 29: | Line 18: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Using the facts in the Foundations section, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{1} & = & \displaystyle{\text{det }(I)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\text{det } (AA^T)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(\text{det }A)(\text{det } A^T)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(\text{det }A)(\text{det } A)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(\text{det }A)^2.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Taking the square root of both sides of the equation | ||
|- | |- | ||
| | | | ||
+ | ::<math>(\text{det }A)^2=1,</math> | ||
+ | |- | ||
+ | |we obtain <math style="vertical-align: -1px">\text{det }A=\pm 1.</math> | ||
|} | |} | ||
Line 43: | Line 50: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | <math>\text{det }A=\pm 1</math> |
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:40, 15 October 2017
If is an matrix such that what are the possible values of
Foundations: |
---|
Recall: |
1. |
2. |
3. |
Solution:
Step 1: |
---|
Using the facts in the Foundations section, we have |
|
Step 2: |
---|
Taking the square root of both sides of the equation |
|
we obtain |
Final Answer: |
---|