031 Review Part 1

From Grad Wiki
Jump to navigation Jump to search

These questions are from sample exams and actual exams at other universities. The questions are meant to represent the material usually covered in Math 31 for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

True or false: If all the entries of a    matrix    are    then    must be  

 Problem 2 

True or false: If a matrix    is diagonalizable, then the matrix    must be diagonalizable as well.

 Problem 3 

True or false: If    is a    matrix with characteristic equation    then    is diagonalizable.

 Problem 4 

True or false: If    is invertible, then    is diagonalizable.

 Problem 5 

True or false: If    and    are invertible    matrices, then so is  

 Problem 6 

True or false: If    is a    matrix and    then    is consistent for all    in  

 Problem 7 

True or false: Let    for    matrices    and    If    is invertible, then    is invertible.

 Problem 8 

True or false: Let    be a subspace of    and    be a vector in    If    and    then  

 Problem 9 

True or false: If    is an invertible    matrix, and    and    are    matrices such that    then