009C Sample Final 1, Problem 10 Detailed Solution
Jump to navigation
Jump to search
A curve is given in polar parametrically by
(a) Sketch the curve.
(b) Compute the equation of the tangent line at .
Background Information: |
---|
1. What two pieces of information do you need to write the equation of a line? |
You need the slope of the line and a point on the line. |
2. What is the slope of the tangent line of a parametric curve? |
The slope is |
Solution:
(a) |
---|
500px |
(b)
Step 1: |
---|
First, we need to find the slope of the tangent line. |
Since and we have |
|
So, at the slope of the tangent line is |
|
Step 2: |
---|
Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation. |
If we plug in into the equations for and we get |
|
and |
|
Thus, the point is on the tangent line. |
Step 3: |
---|
Using the point found in Step 2, the equation of the tangent line at is |
|
Final Answer: |
---|
(a) See above for the graph. |
(b) |