005 Sample Final A, Question 14
From Grad Wiki
Jump to navigation
Jump to search
Question
Prove the following identity,
1
−
sin
(
θ
)
cos
(
θ
)
=
cos
(
θ
)
1
+
sin
(
θ
)
{\displaystyle {\frac {1-\sin(\theta )}{\cos(\theta )}}={\frac {\cos(\theta )}{1+\sin(\theta )}}}
Expand
Foundations:
1) What can you multiply
1
−
sin
(
θ
)
{\displaystyle 1-\sin(\theta )}
by to obtain a formula that is equivalent to something involving
cos
{\displaystyle \cos }
?
Answers:
1) You can multiply
1
−
sin
(
θ
)
{\displaystyle 1-\sin(\theta )}
by
Failed to parse (syntax error): {\displaystyle \frac{1 + \sin(\theta)}{\1 + \sin(\theta)}}
Expand
Step 1:
We start with the left hand side. We have
1
−
sin
(
θ
)
cos
(
θ
)
=
1
−
sin
(
θ
)
cos
(
θ
)
(
1
+
sin
(
θ
)
1
+
sin
(
θ
)
)
{\displaystyle {\frac {1-\sin(\theta )}{\cos(\theta )}}={\frac {1-\sin(\theta )}{\cos(\theta )}}{\Bigg (}{\frac {1+\sin(\theta )}{1+\sin(\theta )}}{\Bigg )}}
.
Expand
Step 2:
Simplifying, we get
1
−
sin
(
θ
)
cos
(
θ
)
=
1
−
sin
2
(
θ
)
cos
(
θ
)
(
1
+
sin
(
θ
)
)
{\displaystyle {\frac {1-\sin(\theta )}{\cos(\theta )}}={\frac {1-\sin ^{2}(\theta )}{\cos(\theta )(1+\sin(\theta ))}}}
.
Expand
Step 3:
Since
1
−
sin
2
(
θ
)
=
cos
2
(
θ
)
{\displaystyle 1-\sin ^{2}(\theta )=\cos ^{2}(\theta )}
, we have
1
−
sin
(
θ
)
cos
(
θ
)
=
cos
2
(
θ
)
cos
(
θ
)
(
1
+
sin
(
θ
)
)
=
cos
(
θ
)
1
+
sin
(
θ
)
{\displaystyle {\frac {1-\sin(\theta )}{\cos(\theta )}}={\frac {\cos ^{2}(\theta )}{\cos(\theta )(1+\sin(\theta ))}}={\frac {\cos(\theta )}{1+\sin(\theta )}}}
Categories
:
Pages with math errors
Pages with math render errors
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information