031 Review Part 2, Problem 5

From Grad Wiki
Jump to navigation Jump to search

Let    and    be  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 6\times 6}   matrices with  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}A=-10}   and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}B=5.}   Use properties of determinants to compute:

(a)  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}3A}

(b)  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}(A^{T}B^{-1})}

Foundations:  
Recall:
1. If the matrix    is identical to the matrix    except the entries in one of the rows of   
are each equal to the corresponding entries of    multiplied by the same scalar  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle c,}   then
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}B=c({\text{det }}A).}
2.  
3. For an invertible matrix    since    and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}I=1,}   we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}A^{-1}={\frac {1}{{\text{det }}A}}.}


Solution:

(a)

Step 1:  
Every entry of the matrix  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 3A}   is    times the corresponding entry of  
So, we multiply every row of the matrix    by    to get  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 3A.}
Step 2:  
Hence, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {{\text{det }}(3A)}&=&\displaystyle {3^{6}({\text{det }}A)}\\&&\\&=&\displaystyle {3^{6}(-10)}\\&&\\&=&\displaystyle {-7290.}\end{array}}}

(b)

Step 1:  
Using properties of determinants, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {{\text{det }}(A^{T}B^{-1})}&=&\displaystyle {{\text{det }}(A^{T})\cdot {\text{det }}(B^{-1})}\\&&\\&=&\displaystyle {{\text{det }}(A)\cdot {\text{det }}(B^{-1}).}\end{array}}}

Step 2:  
Continuing, we obtain

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {{\text{det }}(A^{T}B^{-1})}&=&\displaystyle {{\text{det }}(A)\cdot {\frac {1}{{\text{det }}(B)}}}\\&&\\&=&\displaystyle {(-10)\cdot {\frac {1}{5}}}\\&&\\&=&\displaystyle {-2.}\end{array}}}


Final Answer:  
   (a)     Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}(3A)=-7290}
   (b)    

Return to Review Problems