031 Review Part 2, Problem 5
Let and be Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 6\times 6} matrices with Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}A=-10} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}B=5.} Use properties of determinants to compute:
(a) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}3A}
(b) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}(A^{T}B^{-1})}
| Foundations: |
|---|
| Recall: |
| 1. If the matrix is identical to the matrix except the entries in one of the rows of |
|
|
| 2. |
| 3. For an invertible matrix since and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}I=1,} we have |
|
Solution:
(a)
| Step 1: |
|---|
| Every entry of the matrix Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 3A} is times the corresponding entry of |
| So, we multiply every row of the matrix by to get Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 3A.} |
| Step 2: |
|---|
| Hence, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {{\text{det }}(3A)}&=&\displaystyle {3^{6}({\text{det }}A)}\\&&\\&=&\displaystyle {3^{6}(-10)}\\&&\\&=&\displaystyle {-7290.}\end{array}}} |
(b)
| Step 1: |
|---|
| Using properties of determinants, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {{\text{det }}(A^{T}B^{-1})}&=&\displaystyle {{\text{det }}(A^{T})\cdot {\text{det }}(B^{-1})}\\&&\\&=&\displaystyle {{\text{det }}(A)\cdot {\text{det }}(B^{-1}).}\end{array}}} |
| Step 2: |
|---|
| Continuing, we obtain |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {{\text{det }}(A^{T}B^{-1})}&=&\displaystyle {{\text{det }}(A)\cdot {\frac {1}{{\text{det }}(B)}}}\\&&\\&=&\displaystyle {(-10)\cdot {\frac {1}{5}}}\\&&\\&=&\displaystyle {-2.}\end{array}}} |
| Final Answer: |
|---|
| (a) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}(3A)=-7290} |
| (b) |