031 Review Part 2, Problem 10

From Grad Wiki
Jump to navigation Jump to search

(a) Suppose a    matrix    has 4 pivot columns. What is    Is    Why or why not?

(b) If    is a  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 7\times 5}   matrix, what is the smallest possible dimension of  

Foundations:  
1. The dimension of    is equal to the number of pivots in  
2. By the Rank Theorem, if    is a    matrix, then
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Nul }}A+{\text{dim Col }}A=n.}


Solution:

(a)

Step 1:  
Since    has 4 pivot columns,
Step 2:  
Since    is a    matrix,    contains vectors in  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathbb {R} ^{6}.}
Since a vector in  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathbb {R} ^{6}}   is not a vector in  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathbb {R} ^{4},}   we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{Col }}A\neq \mathbb {R} ^{4}.}

(b)

Step 1:  
By the Rank Theorem, we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Nul }}A+{\text{dim Col }}A=5.}
Thus,
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Nul }}A=5-{\text{dim Col}}A.}
Step 2:  
If we want to minimize  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Nul }}A,}   we need to maximize  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Col }}A.}
To do this, we need to find out the maximum number of pivots in  
Since    is a  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 7\times 5}   matrix, the maximum number of pivots in    is 5.
Hence, the smallest possible value for  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Nul }}A}   is

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {{\text{dim Nul }}A}&=&\displaystyle {5-{\text{dim Col }}A}\\&&\\&\geq &\displaystyle {5-5}\\&&\\&\geq &\displaystyle {0.}\end{array}}}


Final Answer:  
   (a)     Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Col }}A=4}   and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{Col }}A\neq \mathbb {R} ^{4}}
   (b)    

Return to Review Problems