031 Review Part 2, Problem 1

From Grad Wiki
Jump to navigation Jump to search

Consider the matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}}   and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for    and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  

Foundations:  
1. For a matrix  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A,}   the rank of    is
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{rank }}A={\text{dim Col }}A.}
2.    is the vector space spanned by the columns of  
3.    is the vector space containing all solutions to  


Solution:

(a)

Step 1:  
From the matrix  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle B,}   we see that    contains two pivots.
Therefore,

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {{\text{rank }}A}&=&\displaystyle {{\text{dim Col }}A}\\&&\\&=&\displaystyle {2.}\end{array}}}

Step 2:  
By the Rank Theorem, we have

       

Hence,  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Nul }}A=2.}

(b)

Step 1:  
From the matrix  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle B,}   we see that    contains pivots in Column 1 and 2.
So, to obtain a basis for    we select the corresponding columns from  
Hence, a basis for    is
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\Bigg \{}{\begin{bmatrix}1\\-1\\5\end{bmatrix}},{\begin{bmatrix}-4\\2\\-6\end{bmatrix}}{\Bigg \}}.}
Step 2:  
To find a basis for    we translate the matrix equation  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Bx=0}   back into a system of equations
and solve for the pivot variables.
Hence, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {x_{1}-x_{3}+5x_{4}}&=&\displaystyle {0}\\&&\\\displaystyle {-2x_{2}+5x_{3}-6x_{4}}&=&\displaystyle {0.}\end{array}}}

Solving for the pivot variables, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {x_{1}}&=&\displaystyle {x_{3}-5x_{4}}\\&&\\\displaystyle {x_{2}}&=&\displaystyle {{\frac {5}{2}}x_{3}-3x_{4}.}\end{array}}}

Hence, the solutions to  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Ax=0}   are of the form
Therefore, a basis for    is
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\Bigg \{}{\begin{bmatrix}1\\{\frac {5}{2}}\\1\\0\end{bmatrix}},{\begin{bmatrix}-5\\-3\\0\\1\end{bmatrix}}{\Bigg \}}.}


Final Answer:  
   (a)     Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{rank }}A=2}   and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Nul }}A=2}
   (b)     A basis for    is  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\Bigg \{}{\begin{bmatrix}1\\-1\\5\end{bmatrix}},{\begin{bmatrix}-4\\2\\-6\end{bmatrix}}{\Bigg \}}}
        and a basis for    is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigg\{\begin{bmatrix} 1 \\ \frac{5}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ -3 \\ 0 \\ 1 \end{bmatrix}\Bigg\}. }

Return to Review Problems