031 Review Part 2, Problem 1
Consider the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}} and assume that it is row equivalent to the matrix
(a) List rank and
(b) Find bases for and Find an example of a nonzero vector that belongs to as well as an example of a nonzero vector that belongs to
| Foundations: |
|---|
| 1. For a matrix Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A,} the rank of is |
|
| 2. is the vector space spanned by the columns of |
| 3. is the vector space containing all solutions to |
Solution:
(a)
| Step 1: |
|---|
| From the matrix Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle B,} we see that contains two pivots. |
| Therefore, |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {{\text{rank }}A}&=&\displaystyle {{\text{dim Col }}A}\\&&\\&=&\displaystyle {2.}\end{array}}} |
| Step 2: |
|---|
| By the Rank Theorem, we have |
|
|
| Hence, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Nul }}A=2.} |
(b)
| Step 1: |
|---|
| From the matrix Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle B,} we see that contains pivots in Column 1 and 2. |
| So, to obtain a basis for we select the corresponding columns from |
| Hence, a basis for is |
|
| Step 2: |
|---|
| To find a basis for we translate the matrix equation Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Bx=0} back into a system of equations |
| and solve for the pivot variables. |
| Hence, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {x_{1}-x_{3}+5x_{4}}&=&\displaystyle {0}\\&&\\\displaystyle {-2x_{2}+5x_{3}-6x_{4}}&=&\displaystyle {0.}\end{array}}} |
| Solving for the pivot variables, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {x_{1}}&=&\displaystyle {x_{3}-5x_{4}}\\&&\\\displaystyle {x_{2}}&=&\displaystyle {{\frac {5}{2}}x_{3}-3x_{4}.}\end{array}}} |
| Hence, the solutions to Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Ax=0} are of the form |
|
|
| Therefore, a basis for is |
|
| Final Answer: |
|---|
| (a) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{rank }}A=2} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{dim Nul }}A=2} |
| (b) A basis for is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\Bigg \{}{\begin{bmatrix}1\\-1\\5\end{bmatrix}},{\begin{bmatrix}-4\\2\\-6\end{bmatrix}}{\Bigg \}}} |
| and a basis for is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigg\{\begin{bmatrix} 1 \\ \frac{5}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ -3 \\ 0 \\ 1 \end{bmatrix}\Bigg\}. } |