009C Sample Midterm 2, Problem 1 Detailed Solution

From Grad Wiki
Jump to navigation Jump to search

Evaluate:

(a)  

(b)  


Background Information:  
1. L'Hôpital's Rule, Part 2

        Let    and    be differentiable functions on the open interval    for some value  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle a,}  

        where    on    and    returns either  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {0}{0}}}   or   
       Then,   Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow \infty }{\frac {f(x)}{g(x)}}=\lim _{x\rightarrow \infty }{\frac {f'(x)}{g'(x)}}.}
2. The sum of a convergent geometric series is   Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {a}{1-r}}}
        where    is the ratio of the geometric series
        and    is the first term of the series.


Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{0}{0}.}
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{n}\bigg)}{\frac{1}{n}}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{x}\bigg)}{\frac{1}{x}}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{\big(1-\frac{4}{x}\big)}\frac{4}{x^2}}{\big(-\frac{1}{x^2}\big)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-4x}{x-4}}\\ &&\\ & = & \displaystyle{-4.} \end{array}}

Step 4:  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln y= -4,}   we know
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=e^{-4}.}
Now, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}} & = & \displaystyle{\frac{\displaystyle{\lim_{n\rightarrow \infty} 1}}{\displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n-4}{n}\bigg)^n}}}\\ &&\\ & = & \displaystyle{\frac{1}{e^{-4}}}\\ &&\\ & = & \displaystyle{e^4.} \end{array}}

(b)

Step 1:  
First, we not that this is a geometric series with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\frac{1}{4}.}
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|=\frac{1}{4}<1,}
this series converges.
Step 2:  
Now, we need to find the sum of this series.
The first term of the series is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1=\frac{1}{2}.}
Hence, the sum of the series is

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{a_1}{1-r}} & = & \displaystyle{\frac{\frac{1}{2}}{1-\frac{1}{4}}}\\ &&\\ & = & \displaystyle{\frac{\big(\frac{1}{2}\big)}{\big(\frac{3}{4}\big)}}\\ &&\\ & = & \displaystyle{\frac{2}{3}.} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{4}}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}}

Return to Sample Exam