009C Sample Final 1, Problem 9 Detailed Solution

From Grad Wiki
Jump to navigation Jump to search

A curve is given in polar coordinates by

Find the length of the curve.


Background Information:  
1. The arc length    of a polar curve    with  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha _{1}\leq \theta \leq \alpha _{2}}   is given by

       

2. How would you integrate  

       You could use trig substitution and let  

3. Recall that
       


Solution:

Step 1:  
First, we need to calculate  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {dr}{d\theta }}} .
Since  
Using the arc length formula, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle L=\int _{0}^{2\pi }{\sqrt {\theta ^{2}+1}}~d\theta .}

Step 2:  
Now, we proceed using trig substitution.
Let  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \theta =\tan x.}   Then,  
So, the integral becomes

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {L}&=&\displaystyle {\int _{\theta =0}^{\theta =2\pi }{\sqrt {\tan ^{2}x+1}}\sec ^{2}x~dx}\\&&\\&=&\displaystyle {\int _{\theta =0}^{\theta =2\pi }\sec ^{3}x~dx}\\&&\\&=&\displaystyle {{\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|{\bigg |}_{\theta =0}^{\theta =2\pi }.}\\\end{array}}}

Step 3:  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\tan x,}   we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\tan^{-1}\theta .}
So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\ &&\\ & = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|.}\\ \end{array}}


Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|}

Return to Sample Exam