009C Sample Final 1, Problem 9 Detailed Solution
A curve is given in polar coordinates by
Find the length of the curve.
| Background Information: |
|---|
| 1. The arc length of a polar curve with Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha _{1}\leq \theta \leq \alpha _{2}} is given by |
|
|
| 2. How would you integrate |
|
You could use trig substitution and let |
| 3. Recall that |
Solution:
| Step 1: |
|---|
| First, we need to calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {dr}{d\theta }}} . |
| Since |
| Using the arc length formula, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle L=\int _{0}^{2\pi }{\sqrt {\theta ^{2}+1}}~d\theta .} |
| Step 2: |
|---|
| Now, we proceed using trig substitution. |
| Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \theta =\tan x.} Then, |
| So, the integral becomes |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {L}&=&\displaystyle {\int _{\theta =0}^{\theta =2\pi }{\sqrt {\tan ^{2}x+1}}\sec ^{2}x~dx}\\&&\\&=&\displaystyle {\int _{\theta =0}^{\theta =2\pi }\sec ^{3}x~dx}\\&&\\&=&\displaystyle {{\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|{\bigg |}_{\theta =0}^{\theta =2\pi }.}\\\end{array}}} |
| Step 3: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\tan x,} we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\tan^{-1}\theta .} |
| So, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\ &&\\ & = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|.}\\ \end{array}} |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|} |