009A Sample Midterm 1, Problem 2 Detailed Solution

From Grad Wiki
Jump to navigation Jump to search

Suppose the size of a population at time    is given by

(a) Determine the size of the population as    We call this the limiting population size.

(b) Show that at time    the size of the population is half its limiting size.


Background Information:  
Recall that
provided    and  


Solution:

(a)

Step 1:  
We have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{t\rightarrow \infty }N(t)=\lim _{t\rightarrow \infty }{\frac {1000t}{5+t}}.}
Step 2:  
Using the Background Information, we have
       


(b)  
We have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {N(5)}&=&\displaystyle {\frac {1000(5)}{5+5}}\\&&\\&=&\displaystyle {\frac {1000(5)}{10}}\\&&\\&=&\displaystyle {100(5)}\\&&\\&=&\displaystyle {500}\\&&\\&=&\displaystyle {{\frac {1000}{2}}.}\end{array}}}


Final Answer:  
    (a)    
    (b)     Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle N(5)=500}

Return to Sample Exam