009A Sample Midterm 1, Problem 1 Detailed Solution

From Grad Wiki
Jump to navigation Jump to search

Find the following limits:

(a) Find    provided that  

(b) Find  

(c) Evaluate  


Background Information:  
1. If    we have
       
2. Recall
       


Solution:

(a)

Step 1:  
Since  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 2}x=2\neq 0,}
we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {5}&=&\displaystyle {\lim _{x\rightarrow 2}{\bigg [}{\frac {4-g(x)}{x}}{\bigg ]}}\\&&\\&=&\displaystyle {\frac {\displaystyle {\lim _{x\rightarrow 2}(4-g(x))}}{\displaystyle {\lim _{x\rightarrow 2}x}}}\\&&\\&=&\displaystyle {{\frac {\displaystyle {\lim _{x\rightarrow 2}(4-g(x))}}{2}}.}\end{array}}}
Step 2:  
If we multiply both sides of the last equation by  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 2,}   we get
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 10=\lim _{x\rightarrow 2}(4-g(x)).}
Now, using linearity properties of limits, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {10}&=&\displaystyle {\lim _{x\rightarrow 2}4-\lim _{x\rightarrow 2}g(x)}\\&&\\&=&\displaystyle {4-\lim _{x\rightarrow 2}g(x).}\\\end{array}}}
Step 3:  
Solving for  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 2}g(x)}   in the last equation,
we get

       

(b)

Step 1:  
First, we write
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin(4x)}{5x}}=\lim _{x\rightarrow 0}{\frac {4}{5}}{\bigg (}{\frac {\sin(4x)}{4x}}{\bigg )}.}
Step 2:  
Now, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0}{\frac {\sin(4x)}{5x}}}&=&\displaystyle {{\frac {4}{5}}\lim _{x\rightarrow 0}{\frac {\sin(4x)}{4x}}}\\&&\\&=&\displaystyle {{\frac {4}{5}}(1)}\\&&\\&=&\displaystyle {{\frac {4}{5}}.}\end{array}}}

(c)

Step 1:  
When we plug in values close to  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -3}   into   Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {x}{x^{2}-9}},}
we get a small denominator, which results in a large number.
Thus,
       
is either equal to    or  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -\infty .}
Step 2:  
To figure out which one, we factor the denominator to get
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow -3^{+}}{\frac {x}{x^{2}-9}}=\lim _{x\rightarrow -3^{+}}{\frac {x}{(x-3)(x+3)}}.}
We are taking a right hand limit. So, we are looking at values of  
a little bigger than    (You can imagine values like  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=-2.9.}  )
For these values, the numerator will be negative.
Also, for these values,  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x-3}   will be negative and    will be positive.
Therefore, the denominator will be negative.
Since both the numerator and denominator will be negative (have the same sign),
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow -3^{+}}{\frac {x}{x^{2}-9}}=\infty .}


Final Answer:  
    (a)     Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -6}
    (b)     Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {4}{5}}}
    (c)    

Return to Sample Exam