Find the following limits:
(a) Find
provided that
(b) Find
(c) Evaluate
| Background Information:
|
1. If we have
|
|
| 2. Recall
|
|
Solution:
(a)
| Step 1:
|
| Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 2}x=2\neq 0,}
|
| we have
|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {5}&=&\displaystyle {\lim _{x\rightarrow 2}{\bigg [}{\frac {4-g(x)}{x}}{\bigg ]}}\\&&\\&=&\displaystyle {\frac {\displaystyle {\lim _{x\rightarrow 2}(4-g(x))}}{\displaystyle {\lim _{x\rightarrow 2}x}}}\\&&\\&=&\displaystyle {{\frac {\displaystyle {\lim _{x\rightarrow 2}(4-g(x))}}{2}}.}\end{array}}}
|
| Step 2:
|
| If we multiply both sides of the last equation by Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 2,}
we get
|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 10=\lim _{x\rightarrow 2}(4-g(x)).}
|
| Now, using linearity properties of limits, we have
|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {10}&=&\displaystyle {\lim _{x\rightarrow 2}4-\lim _{x\rightarrow 2}g(x)}\\&&\\&=&\displaystyle {4-\lim _{x\rightarrow 2}g(x).}\\\end{array}}}
|
| Step 3:
|
| Solving for Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 2}g(x)}
in the last equation,
|
| we get
|
|
|
(b)
| Step 1:
|
| First, we write
|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin(4x)}{5x}}=\lim _{x\rightarrow 0}{\frac {4}{5}}{\bigg (}{\frac {\sin(4x)}{4x}}{\bigg )}.}
|
| Step 2:
|
| Now, we have
|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0}{\frac {\sin(4x)}{5x}}}&=&\displaystyle {{\frac {4}{5}}\lim _{x\rightarrow 0}{\frac {\sin(4x)}{4x}}}\\&&\\&=&\displaystyle {{\frac {4}{5}}(1)}\\&&\\&=&\displaystyle {{\frac {4}{5}}.}\end{array}}}
|
(c)
| Step 1:
|
| When we plug in values close to Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -3}
into Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {x}{x^{2}-9}},}
|
| we get a small denominator, which results in a large number.
|
| Thus,
|
|
is either equal to or Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -\infty .}
|
| Step 2:
|
| To figure out which one, we factor the denominator to get
|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow -3^{+}}{\frac {x}{x^{2}-9}}=\lim _{x\rightarrow -3^{+}}{\frac {x}{(x-3)(x+3)}}.}
|
We are taking a right hand limit. So, we are looking at values of
|
a little bigger than (You can imagine values like Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=-2.9.}
)
|
| For these values, the numerator will be negative.
|
Also, for these values, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x-3}
will be negative and will be positive.
|
| Therefore, the denominator will be negative.
|
| Since both the numerator and denominator will be negative (have the same sign),
|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow -3^{+}}{\frac {x}{x^{2}-9}}=\infty .}
|
| Final Answer:
|
| (a) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -6}
|
| (b) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {4}{5}}}
|
(c)
|
Return to Sample Exam