009A Sample Final 1, Problem 3 Detailed Solution

From Grad Wiki
Jump to navigation Jump to search

Find the derivatives of the following functions.

(a)  

(b)  


Background Information:  
1. Chain Rule
       
2. Quotient Rule
       
3. Trig Derivatives
       


Solution:

(a)

Step 1:  
Using the Chain Rule, we have

       

Step 2:  
Now, we need to calculate  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {d}{dx}}{\bigg (}{\frac {x^{2}-1}{x^{2}+1}}{\bigg )}.}
To do this, we use the Quotient Rule. So, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {f'(x)}&=&\displaystyle {{\frac {x^{2}+1}{x^{2}-1}}\cdot {\frac {d}{dx}}{\bigg (}{\frac {x^{2}-1}{x^{2}+1}}{\bigg )}}\\&&\\&=&\displaystyle {{\frac {x^{2}+1}{x^{2}-1}}\cdot {\frac {(x^{2}+1)(2x)-(x^{2}-1)(2x)}{(x^{2}+1)^{2}}}}\\&&\\&=&\displaystyle {{\frac {x^{2}+1}{x^{2}-1}}\cdot {\frac {4x}{(x^{2}+1)^{2}}}\cdot }\\&&\\&=&\displaystyle {\frac {4x}{(x^{2}-1)(x^{2}+1)}}\\&&\\&=&\displaystyle {{\frac {4x}{x^{4}-1}}.}\\\end{array}}}

(b)

Step 1:  
We need to use the Chain Rule. We have

        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {g'(x)}&=&\displaystyle {3\cos(4x)\cdot (4x)'+4\sec ^{2}({\sqrt {1+x^{3}}})\cdot {\frac {d}{dx}}({\sqrt {1+x^{3}}})}\\&&\\&=&\displaystyle {3\cos(4x)\cdot 4+4\sec ^{2}({\sqrt {1+x^{3}}})\cdot {\frac {d}{dx}}({\sqrt {1+x^{3}}})}\\&&\\&=&\displaystyle {12\cos(4x)+4\sec ^{2}({\sqrt {1+x^{3}}})\cdot {\frac {d}{dx}}({\sqrt {1+x^{3}}})}\\\end{array}}}

Step 2:  
We need to calculate   Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {d}{dx}}({\sqrt {1+x^{3}}}).}
We use the Chain Rule again to get

        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {g'(x)}&=&\displaystyle {12\cos(4x)+4\sec ^{2}({\sqrt {1+x^{3}}})\cdot {\frac {d}{dx}}{\sqrt {1+x^{3}}}}\\&&\\&=&\displaystyle {12\cos(4x)+4\sec ^{2}({\sqrt {1+x^{3}}}){\frac {1}{2}}(1+x^{3})^{-{\frac {1}{2}}}\cdot {\frac {d}{dx}}(1+x^{3})}\\&&\\&=&\displaystyle {12\cos(4x)+4\sec ^{2}({\sqrt {1+x^{3}}}){\frac {1}{2}}(1+x^{3})^{-{\frac {1}{2}}}(3x^{2})}\\&&\\&=&\displaystyle {12\cos(4x)+{\frac {6\sec ^{2}({\sqrt {1+x^{3}}})x^{2}}{\sqrt {1+x^{3}}}}.}\\\end{array}}}


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam