007A Sample Midterm 3, Problem 1 Detailed Solution

From Grad Wiki
Jump to navigation Jump to search

Find the following limits:

(a) If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,}   find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 3} f(x).}

(b) Evaluate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 2} \frac{2-x}{x^2-4}. }

(c) Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. }


Background Information:  
1. If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow a} g(x)\neq 0,}   we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.}
2. Recall
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{x}=1}


Solution:

(a)

Step 1:  
First, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{2} & = & \displaystyle{\lim_{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}+\lim_{x\rightarrow 3} 1}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}+1.} \end{array}}
Therefore,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3} \frac{f(x)}{2x}=1.}
Step 2:  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3} 2x=6\ne 0,}   we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{1} & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 3} f(x)}}{\displaystyle{\lim_{x\rightarrow 3} 2x}}}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 3} f(x)}}{6}.} \end{array}}

Multiplying both sides by  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6,}   we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3} f(x)=6.}

(b)

Step 1:  
First, we write
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 2} \frac{2-x}{x^2-4}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{2-x}{(x-2)(x+2)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 2} \frac{-(x-2)}{(x-2)(x+2)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 2} \frac{-1}{x+2}.} \end{array}}
Step 2:  
Now, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 2} \frac{2-x}{x^2-4}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{-1}{x+2}}\\ &&\\ & = & \displaystyle{-\frac{1}{4}.} \end{array}}

(c)

Step 1:  
First, we write
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{\sin(4x)}{\cos(4x)}\cdot \frac{1}{\sin(6x)}\bigg]}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \bigg[\frac{4}{6} \cdot \frac{\sin(4x)}{4x}\cdot \frac{6x}{\sin(6x)}\cdot\frac{1}{\cos(4x)}\bigg]}\\ &&\\ & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \bigg[\frac{\sin(4x)}{4x}\cdot \frac{6x}{\sin(6x)}\cdot \frac{1}{\cos(4x)}\bigg].} \end{array}}
Step 2:  
Now, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \bigg[\frac{\sin(4x)}{4x}\cdot\frac{6x}{\sin(6x)}\cdot\frac{1}{\cos(4x)}\bigg]}\\ &&\\ & = & \displaystyle{\frac{4}{6}\bigg(\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\bigg)\cdot\bigg(\lim_{x\rightarrow 0} \frac{6x}{\sin(6x)}\bigg)\cdot\bigg(\lim_{x\rightarrow 0} \frac{1}{\cos(4x)}\bigg)}\\ &&\\ & = & \displaystyle{\frac{4}{6} \cdot (1)\cdot (1)\cdot(1)}\\ &&\\ & = & \displaystyle{\frac{2}{3}.} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{4}}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}}

Return to Sample Exam