007A Sample Final 3, Problem 7 Detailed Solution

From Grad Wiki
Jump to navigation Jump to search

Compute

(a)  

(b)  

(c)  


Background Information:  
L'Hôpital's Rule, Part 1

        Let    and    where    and    are differentiable functions

       on an open interval    containing    and    on    except possibly at   
       Then,  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {x}{3-{\sqrt {9-x}}}},}
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the denominator.
Hence, we have
       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \pi }{\frac {\sin(x)}{\pi -x}}}&{\overset {L'H}{=}}&\displaystyle {\lim _{x\rightarrow \pi }{\frac {\cos(x)}{-1}}.}\end{array}}}

Step 2:  
Now, we plug in  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=\pi }   to get
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \pi }{\frac {\sin(x)}{\pi -x}}}&=&\displaystyle {\frac {\cos(\pi )}{-1}}\\&&\\&=&\displaystyle {\frac {-1}{-1}}\\&&\\&=&\displaystyle {1.}\end{array}}}

(c)

Step 1:  
We begin by factoring the numerator and denominator. We have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow -2}{\frac {x^{2}-x-6}{x^{3}+8}}\,=\,\lim _{x\rightarrow -2}{\frac {(x+2)(x-3)}{(x+2)(x^{2}-2x+4)}}.}

So, we can cancel  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x+2}   in the numerator and denominator. Thus, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow -2}{\frac {x^{2}-x-6}{x^{3}+8}}\,=\,\lim _{x\rightarrow -2}{\frac {x-3}{x^{2}-2x+4}}.}

Step 2:  
Now, we can plug in    to get
       


Final Answer:  
   (a)   
   (b)   
   (c)   Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -{\frac {5}{12}}}

Return to Sample Exam