Find the derivative of the following function using the limit definition of the derivative:

| Background Information:
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}}
|
Solution:
| Step 1:
|
| Using the limit definition of derivative, we have
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(3(x+h)-(x+h)^2)-(3x-x^2)}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3x+3h-(x^2+2xh+h^2)-3x+x^2}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h-2xh-h^2}{h}.} \end{array}}
|
| Step 2:
|
| Now, we have
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h-2xh-h^2}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} 3-2x-h}\\ &&\\ & = & \displaystyle{3-2x.} \end{array}}
|
| Final Answer:
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3-2x}
|
Return to Sample Exam