Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a)
(b)
given that
(c)
| Background Information:
|
1. If we have
|
|
2.
|
Solution:
(a)
| Step 1:
|
We begin by noticing that we plug in into
|
|
we get
|
| Step 2:
|
| Now, we multiply the numerator and denominator by the conjugate of the denominator.
|
| Hence, we have
|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0}{\frac {\sin(5x)}{1-{\sqrt {1-x}}}}}&=&\displaystyle {\lim _{x\rightarrow 0}{\frac {\sin(5x)}{1-{\sqrt {1-x}}}}{\bigg (}{\frac {1+{\sqrt {1-x}}}{1+{\sqrt {1-x}}}}{\bigg )}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow 0}{\frac {\sin(5x)(1+{\sqrt {1-x}})}{x}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow 0}{\frac {\sin(5x)}{x}}(1+{\sqrt {1-x}})}\\&&\\&=&\displaystyle {\lim _{x\rightarrow 0}{\bigg (}{\frac {\sin(5x)}{x}}{\bigg )}\lim _{x\rightarrow 0}(1+{\sqrt {1-x}})}\\&&\\&=&\displaystyle {5\lim _{x\rightarrow 0}{\bigg (}{\frac {\sin(5x)}{5x}}{\bigg )}(2)}\\&&\\&=&\displaystyle {5(1)(2)}\\&&\\&=&\displaystyle {10.}\end{array}}}
|
(b)
| Step 1:
|
Since
|
| we have
|
|
|
|
| Step 2:
|
If we multiply both sides of the last equation by we get
|
|
| Now, using properties of limits, we have
|
|
| Step 3:
|
| Solving for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8} f(x)}
in the last equation,
|
| we get
|
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8} f(x)=-\frac{3}{4}.}
|
(c)
| Step 1:
|
| First, we write
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}\cdot \frac{\big(\frac{1}{x^3}\big)}{\big(\frac{1}{x^3}\big)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9-\frac{1}{x^5}}}{3+\frac{4}{x^2}}.} \end{array}}
|
| Step 2:
|
| Now, we have
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow -\infty}} \sqrt{9-\frac{1}{x^5}}}{\displaystyle{\lim_{x\rightarrow -\infty}}\bigg(3+\frac{4}{x^2}\bigg)}}\\ &&\\ & = & \displaystyle{\frac{\sqrt{9}}{3}}\\ &&\\ & = & \displaystyle{1.} \end{array}}
|
| Final Answer:
|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10}
|
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3}{4}}
|
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
|
Return to Sample Exam