007A Sample Final 3, Problem 1 Detailed Solution
Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8} f(x),} given that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8}\frac{xf(x)}{3}=-2}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}}
| Background Information: |
|---|
| 1. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow a} g(x)\neq 0,} we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.} |
| 2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{x}=1} |
Solution:
(a)
| Step 1: |
|---|
| We begin by noticing that we plug in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} into |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sin(5x)}{1-\sqrt{1-x}},} |
| we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{0}{0}.} |
| Step 2: |
|---|
| Now, we multiply the numerator and denominator by the conjugate of the denominator. |
| Hence, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}} \bigg(\frac{1+\sqrt{1-x}}{1+\sqrt{1-x}}\bigg)}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)(1+\sqrt{1-x})}{x}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{x}(1+\sqrt{1-x})}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \bigg(\frac{\sin(5x)}{x}\bigg) \lim_{x\rightarrow 0}(1+\sqrt{1-x})}\\ &&\\ & = & \displaystyle{5\lim_{x\rightarrow 0} \bigg(\frac{\sin(5x)}{5x}\bigg) (2)}\\ &&\\ & = & \displaystyle{5(1)(2)}\\ &&\\ & = & \displaystyle{10.} \end{array}} |
(b)
| Step 1: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8} 3 =3\ne 0,} |
| we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{-2} & = & \displaystyle{\lim _{x\rightarrow 8} \bigg[\frac{xf(x)}{3}\bigg]}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 8} xf(x)}}{\displaystyle{\lim_{x\rightarrow 8} 3}}}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 8} xf(x)}}{3}.} \end{array}} |
| Step 2: |
|---|
| If we multiply both sides of the last equation by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3,} we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6=\lim_{x\rightarrow 8} xf(x).} |
| Now, using properties of limits, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{-6} & = & \displaystyle{\bigg(\lim_{x\rightarrow 8} x\bigg)\bigg(\lim_{x\rightarrow 8}f(x)\bigg)}\\ &&\\ & = & \displaystyle{8\lim_{x\rightarrow 8} f(x).}\\ \end{array}} |
| Step 3: |
|---|
| Solving for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8} f(x)} in the last equation, |
| we get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8} f(x)=-\frac{3}{4}.} |
(c)
| Step 1: |
|---|
| First, we write |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}\cdot \frac{\big(\frac{1}{x^3}\big)}{\big(\frac{1}{x^3}\big)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9-\frac{1}{x^5}}}{3+\frac{4}{x^2}}.} \end{array}} |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow -\infty}} \sqrt{9-\frac{1}{x^5}}}{\displaystyle{\lim_{x\rightarrow -\infty}}\bigg(3+\frac{4}{x^2}\bigg)}}\\ &&\\ & = & \displaystyle{\frac{\sqrt{9}}{3}}\\ &&\\ & = & \displaystyle{1.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3}{4}} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} |