005 Sample Final A

From Grad Wiki
Revision as of 08:52, 6 May 2015 by Matt Lee (talk | contribs)
Jump to navigation Jump to search

 Question 1  Please circle either true or false,
    a. (True/False)In a geometric sequence, the common ratio is always positive.
    b. (True/False) A linear system of equations always has a solution.
    c. (True/False) Every function has an inverse.
    d. (True/False) Trigonometric equations do not always have unique solutions.
    e. (True/False) The domain of is all real numbers.
    f. (True/False) The function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_a(x)} is defined for all real numbers.

 Question 2  Find the domain of the following function. Your answer should be in interval notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{1}{\sqrt{x^2-x-2}}}

 Question 3  Find f Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \circ} g and its domain if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}}

 Question 4  Find the inverse of the following function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{3x}{2x-1}}

 Question 5  Solve the following inequality. Your answer should be in interval notation. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3x+5}{x+2}\ge 2}

 Question 6  Factor the following polynomial completely,     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x) = x^4 + x^3 + 2x-4 }

 Question 7  Solve the following equation,      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\log_5(x) = 3\log_5(4)}

 Question 8  Solve the following equation,      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3^{2x} + 3^x -2 = 0 }

 Question 9  Solve the following system of equations

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} 2x + 3y &= & 1\\ -x + y & = & -3\end{align}}

 Question 10  Write the partial fraction decomposition of the following,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x+2}{x^3-2x^2+x}}

 Question 11  Solve the following equation in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0, 2\pi)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)}

 Question 12  Given that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec(\theta) = -2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tan(\theta) > 0 } , find the exact values of the remaining trig functions.

 Question 13  Give the exact value of the following if its defined, otherwise, write undefined.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\right) \qquad \qquad (c)\sec\left(\frac{-17\pi}{6}\right)}

 Question 14 Prove the following identity,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}}

 Question 15  Find an equivalent algebraic expression for the following,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\tan^{-1}(x))}

 Question 16  Graph the following,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -x^2+4y^2-2x-16y+11=0}

 Question 17  Graph the following function,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \log_2(x+1) + 2}


Make sure to label any asymptotes, and at least two points on the graph.

 Question 18  Graph the following function,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \left(\frac{1}{3}\right)^{x+1} + 1}


Make sure to label any asymptotes, and at least two points on the graph.

 Question 19  Consider the following function,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = -\sin\left(3x+\frac{\pi}{2}\right)+1}


     a. What is the amplitude?
     b. What is the period?
     c. What is the phase shift?
     d. What is the vertical shift?
     e. Graph one cycle of f(x). Make sure to label five key points.

 Question 20  Consider the following rational function,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{x^2+x-2}{x^2-1}}


     a. What is the domain of f?
     b. What are the x and y-intercepts of f?
     c. What are teh vertical and horizontal asymptotes of f, if any? Does f have any holes?
     d. Graph f(x). Make sure to include the information you found above.

 Question 21  Find the sum

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 + 9 + 13 + \cdots + 49 }

 Question 22  Consider the following sequence,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3, 1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \cdots }


     a. Determine a formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n} , the n-th term of the sequence.
     b. Find the sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\sum_{k=1}^\infty a_k}}