007A Sample Final 3, Problem 7 Detailed Solution
Compute
(a)
(b)
(c)
| Background Information: |
|---|
| L'Hôpital's Rule, Part 1 |
|
Let and where and are differentiable functions |
| on an open interval containing and on except possibly at |
| Then, |
Solution:
(a)
| Step 1: |
|---|
| We begin by noticing that we plug in into |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {x}{3-{\sqrt {9-x}}}},} |
| we get |
| Step 2: |
|---|
| Now, we multiply the numerator and denominator by the conjugate of the denominator. |
| Hence, we have |
(b)
| Step 1: |
|---|
| We proceed using L'Hôpital's Rule. So, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \pi }{\frac {\sin(x)}{\pi -x}}}&{\overset {L'H}{=}}&\displaystyle {\lim _{x\rightarrow \pi }{\frac {\cos(x)}{-1}}.}\end{array}}} |
| Step 2: |
|---|
| Now, we plug in Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=\pi } to get |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \pi }{\frac {\sin(x)}{\pi -x}}}&=&\displaystyle {\frac {\cos(\pi )}{-1}}\\&&\\&=&\displaystyle {\frac {-1}{-1}}\\&&\\&=&\displaystyle {1.}\end{array}}} |
(c)
| Step 1: |
|---|
| We begin by factoring the numerator and denominator. We have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow -2}{\frac {x^{2}-x-6}{x^{3}+8}}\,=\,\lim _{x\rightarrow -2}{\frac {(x+2)(x-3)}{(x+2)(x^{2}-2x+4)}}.} |
| So, we can cancel Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x+2} in the numerator and denominator. Thus, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow -2}{\frac {x^{2}-x-6}{x^{3}+8}}\,=\,\lim _{x\rightarrow -2}{\frac {x-3}{x^{2}-2x+4}}.} |
| Step 2: |
|---|
| Now, we can plug in to get |
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -{\frac {5}{12}}} |