007A Sample Final 1, Problem 10 Detailed Solution

From Grad Wiki
Revision as of 07:37, 3 December 2017 by Kayla Murray (talk | contribs) (Created page with "<span class="exam">Given the function  <math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>, <span class="exam">(a) Find the intervals in which the function increa...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Given the function  ,

(a) Find the intervals in which the function increases or decreases.

(b) Find the local maximum and local minimum values.

(c) Find the intervals in which the function concaves upward or concaves downward.

(d) Find the inflection point(s).

(e) Use the above information (a) to (d) to sketch the graph of  .


Background Information:  
Recall:
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  
4. Inflection points occur when    and the second derivative changes sign.


Solution:

(a)

Step 1:  
We start by taking the derivative of   
We have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f'(x)=3x^{2}-12x.}
Now, we set    So, we have
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0=3x(x-4).}
Hence, we have    and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=4.}
So, these values of    break up the number line into 3 intervals:
       
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=-1,~f'(x)=15>0.}
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=1,~f'(x)=-9<0.}
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=5,~f'(x)=15>0.}
Thus,    is increasing on  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,0)\cup (4,\infty ),}   and decreasing on  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (0,4).}

(b)

Step 1:  
By the First Derivative Test, the local maximum occurs at   
and the local minimum occurs at  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=4.}
Step 2:  
So, the local maximum value is   
and the local minimum value is  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(4)=-27.}

(c)

Step 1:  
To find the intervals when the function is concave up or concave down,
we need to find  
We have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)=6x-12.}
We set  
So, we have
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0=6x-12.}  
Hence,  
This value breaks up the number line into two intervals:
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,2),(2,\infty ).}
Step 2:  
Again, we use test points in these two intervals.
For    we have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)=-12<0.}
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=3,}   we have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)=6>0.}
Thus,    is concave up on the interval  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (2,\infty ),}   and concave down on the interval  
(d)  
Using the information from part (c), there is one inflection point that occurs at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2.}
Now, we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(2)=8-24+5=-11.}
So, the inflection point is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,-11).}
(e)  


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is increasing on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,0),(4,\infty)}   and decreasing on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,4).}
   (b)    The local maximum value is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)=5}   and the local minimum value is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(4)=-27.}
   (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is concave up on the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,\infty)}   and concave down on the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,2).}
   (d)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,-11)}
   (e)     See graph above.

Return to Sample Exam