007A Sample Final 1, Problem 1 Detailed Solution

From Grad Wiki
Revision as of 08:26, 3 December 2017 by Kayla Murray (talk | contribs) (Created page with "<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity. <span class="exam">(a)   <math style="ver...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)  

(b)  

(c)  


Background Information:  
L'Hôpital's Rule, Part 1

        Let    and    where    and    are differentiable functions

       on an open interval    containing    and    on    except possibly at   
       Then,  


Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have

       

So, we can cancel    in the numerator and denominator. Thus, we have

       

Step 2:  
Now, we can plug in    to get

       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
This limit is  

(c)

Step 1:  
We have

       

Since we are looking at the limit as    goes to negative infinity, we have  
So, we have

       

Step 2:  
We simplify to get

       


Final Answer:  
    (a)   
    (b)   
    (c)   

Return to Sample Exam