009A Sample Final 1, Problem 2 Detailed Solution

From Grad Wiki
Revision as of 06:49, 3 December 2017 by Kayla Murray (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Consider the following piecewise defined function:

(a) Show that    is continuous at  

(b) Using the limit definition of the derivative, and computing the limits from both sides, show that    is differentiable at  .


Background Information:  
1.    is continuous at    if
       
2. The definition of derivative for    is
       


Solution:

(a)

Step 1:  
We first calculate    We have

       

Step 2:  
Now, we calculate    We have

       

Step 3:  
Now, we calculate    We have

       

Since
       
  is continuous at  

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have

       

Step 2:  
Now, we have

       

Step 3:  
Since
       
  is differentiable at  


Final Answer:  
    (a)     Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)}   is continuous at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3.}
    (b)     Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},}

              Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3.}

Return to Sample Exam