009C Sample Final 3, Problem 7 Detailed Solution

From Grad Wiki
Revision as of 17:52, 2 December 2017 by Kayla Murray (talk | contribs) (Created page with "<span class="exam">A curve is given in polar coordinates by ::<math>r=1+\cos^2(2\theta)</math> <span class="exam">(a) Show that the point with Cartesian coordinates  <...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

A curve is given in polar coordinates by

(a) Show that the point with Cartesian coordinates    belongs to the curve.

(b) Sketch the curve.

(c) In Cartesian coordinates, find the equation of the tangent line at  


Background Information:  
1. What two pieces of information do you need to write the equation of a line?

       You need the slope of the line and a point on the line.

2. How do you calculate     for a polar curve  

       Since   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=r\cos(\theta),~y=r\sin(\theta),}   we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.}


Solution:

(a)

Step 1:  
First, we need to convert this Cartesian point into polar.
We have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{r} & = & \displaystyle{\sqrt{x^2+y^2}}\\ &&\\ & = & \displaystyle{\sqrt{\frac{2}{4}+\frac{2}{4}}}\\ &&\\ & = & \displaystyle{\sqrt{1}}\\ &&\\ & = & \displaystyle{1.} \end{array}}
Also, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\tan \theta } & = & \displaystyle{\frac{y}{x}}\\ &&\\ & = & \displaystyle{1.} \end{array}}
So,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\frac{\pi}{4}.}
Now, this point in polar is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigg(1,\frac{\pi}{4}\bigg).}
Step 2:  
Now, we plug in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\frac{\pi}{4}}   into our polar equation.
We get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{r} & = & \displaystyle{1+\cos^2\bigg(\frac{2\pi}{4}\bigg)}\\ &&\\ & = & \displaystyle{1+(0)^2}\\ &&\\ & = & \displaystyle{1.} \end{array}}
So, the point  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x,y)}   belongs to the curve.
(b)  
 

(c)

Step 1:  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1+\cos^2(2\theta),}

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dr}{d\theta}=-4\cos(2\theta)\sin(2\theta).}

Since

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},}

we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{dy}{dx}} & = & \displaystyle{\frac{-4\cos(2\theta)\sin(2\theta)\sin\theta+(1+\cos^2(2\theta))\cos\theta}{-4\cos(2\theta)\sin(2\theta)\cos\theta-(1+\cos^2(2\theta))\sin\theta}.}\\ \end{array}}

Step 2:  
Now, recall from part (a) that the given point in polar coordinates is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigg(1,\frac{\pi}{4}\bigg).}
Therefore, the slope of the tangent line at this point is
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{m} & = & \displaystyle{\frac{-4\cos(\frac{\pi}{2})\sin(\frac{\pi}{2})\sin(\frac{\pi}{4})+(1+\cos^2(\frac{\pi}{2}))\cos(\frac{\pi}{4})}{-4\cos(\frac{\pi}{2})\sin(\frac{\pi}{2})\cos(\frac{\pi}{4})-(1+\cos^2(\frac{\pi}{2}))\sin(\frac{\pi}{4})}}\\ &&\\ & = & \displaystyle{\frac{0+(1)(\frac{\sqrt{2}}{2})}{0-(1)(\frac{\sqrt{2}}{2})}}\\ &&\\ & = & \displaystyle{-1.} \end{array}}
Therefore, the equation of the tangent line at the point  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x,y)}   is
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-1\bigg(x-\frac{\sqrt{2}}{2}\bigg)+\frac{\sqrt{2}}{2}.}


Final Answer:  
    (a)     See above.
    (b)     See above.
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-1\bigg(x-\frac{\sqrt{2}}{2}\bigg)+\frac{\sqrt{2}}{2}}

Return to Sample Exam