009C Sample Final 3, Problem 4 Detailed Solution
Determine if the following series converges or diverges. Please give your reason(s).
(a) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sum _{n=1}^{\infty }{\frac {n!}{(2n)!}}}
(b) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sum _{n=1}^{\infty }(-1)^{n}{\frac {1}{n+1}}}
| Background Information: |
|---|
| 1. Ratio Test |
| Let be a series and |
| Then, |
|
If the series is absolutely convergent. |
|
If the series is divergent. |
|
If the test is inconclusive. |
| 2. If a series absolutely converges, then it also converges. |
| 3. Alternating Series Test |
| Let be a positive, decreasing sequence where |
| Then, and |
| converge. |
Solution:
(a)
| Step 1: |
|---|
| We begin by using the Ratio Test. |
| We have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{n\rightarrow \infty }{\bigg |}{\frac {a_{n+1}}{a_{n}}}{\bigg |}}&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg |}{\frac {(n+1)!}{(2(n+1))!}}{\frac {(2n)!}{n!}}{\bigg |}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg |}{\frac {(n+1)n!}{(2n+2)(2n+1)(2n)!}}{\frac {(2n)!}{n!}}{\bigg |}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\frac {n+1}{(2n+2)(2n+1)}}}\\&&\\&=&\displaystyle {0.}\end{array}}} |
| Step 2: |
|---|
| Since |
| the series is absolutely convergent by the Ratio Test. |
| Therefore, the series converges. |
(b)
| Step 1: |
|---|
| For |
| we notice that this series is alternating. |
| Let |
| First, we have |
| for all |
| The sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{b_n\}} is decreasing since |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{n+2}<\frac{1}{n+1}} |
| for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\ge 1.} |
| Step 2: |
|---|
| Also, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n+1}=0.} |
| Therefore, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty (-1)^n\frac{1}{n+1}} |
| converges by the Alternating Series Test. |
| Final Answer: |
|---|
| (a) converges (by the Ratio Test) |
| (b) converges (by the Alternating Series Test) |