(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Test if the following series converges or diverges. Give reasons and clearly state if you are using any standard test.

| Background Information:
|
| Limit Comparison Test
|
Let and be positive sequences.
|
If where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L}
is a positive real number,
|
| then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty b_n}
either both converge or both diverge.
|
Solution:
| Step 1:
|
| First, we note that
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{n^3+7n}{\sqrt{1+n^{10}}}>0}
|
| for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\ge 1.}
|
| This means that we can use a comparison test on this series.
|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n=\frac{n^3+7n}{\sqrt{1+n^{10}}}.}
|
| Step 2:
|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n=\frac{1}{n^2}.}
|
| We want to compare the series in this problem with
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty b_n=\sum_{n=1}^\infty \frac{1}{n^2}.}
|
| This is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p}
-series with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=2.}
|
| Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty b_n}
converges
|
|
|
| Step 3:
|
| Now, we have
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n\rightarrow \infty} \frac{a_n}{b_n}} & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{(\frac{n^3+7n}{\sqrt{1+n^{10}}})}{(\frac{1}{n^2})}}\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n^5+7n^3}{\sqrt{1+n^{10}}}}\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n^5+7n^3}{\sqrt{1+n^{10}}} \bigg(\frac{\frac{1}{n^5}}{\frac{1}{n^5}}\bigg)}\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{1+\frac{7}{n^4}}{\sqrt{\frac{1}{n^{10}}+1}}}\\ &&\\ & = & \displaystyle{1.} \end{array}}
|
| Therefore, the series
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty} \frac{n^3+7n}{\sqrt{1+n^{10}}}}
|
| converges by the Limit Comparison Test.
|
| Final Answer:
|
| converges (by the Limit Comparison Test)
|
Return to Sample Exam