009C Sample Final 2, Problem 4 Detailed Solution
Revision as of 17:28, 2 December 2017 by Kayla Murray (talk | contribs) (Created page with "<span class="exam">(a) Find the radius of convergence for the power series ::<math>\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}.</math> <span class="exam">(b) Find the interval...")
(a) Find the radius of convergence for the power series
(b) Find the interval of convergence of the above series.
| Background Information: |
|---|
| Ratio Test |
| Let be a series and |
| Then, |
|
If the series is absolutely convergent. |
|
If the series is divergent. |
|
If the test is inconclusive. |
Solution:
(a)
| Step 1: |
|---|
| We use the Ratio Test to determine the radius of convergence. |
| We have |
|
|
| Step 2: |
|---|
| The Ratio Test tells us this series is absolutely convergent if |
| Hence, the Radius of Convergence of this series is |
(b)
| Step 1: |
|---|
| First, note that corresponds to the interval |
| To obtain the interval of convergence, we need to test the endpoints of this interval |
| for convergence since the Ratio Test is inconclusive when |
| Step 2: |
|---|
| First, let |
| Then, the series becomes |
| This is an alternating series. |
| Let . |
| The sequence is decreasing since |
| for all |
| Also, |
| Therefore, this series converges by the Alternating Series Test |
| and we include in our interval. |
| Step 3: |
|---|
| Now, let |
| Then, the series becomes |
| This is a -series with Hence, the series diverges. |
| Therefore, we do not include in our interval. |
| Step 4: |
|---|
| The interval of convergence is |
| Final Answer: |
|---|
| (a) The radius of convergence is |
| (b) |