A curve is given in polar coordinates by
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1+\sin 2\theta}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq \theta \leq 2\pi}
(a) Sketch the curve.
(b) Find the area enclosed by the curve.
| Background Information:
|
| The area under a polar curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=f(\theta)}
is given by
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta}
for appropriate values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_1,\alpha_2.}
|
Solution:
(a)
(b)
| Step 1:
|
| Since the graph has symmetry (as seen in the previous image), the area of the curve is
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta))^2~d\theta.}
|
| Step 2:
|
| Using the double angle formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(2\theta),}
we have
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta))^2~d\theta} & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\sin^2(2\theta)~d\theta} \\ &&\\ & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\frac{1-\cos(4\theta)}{2}~d\theta}\\ &&\\ & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{3}{2}+2\sin(2\theta)-\frac{\cos(4\theta)}{2}~d\theta}\\ &&\\ & = & \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}.}\\ \end{array}}
|
| Step 3:
|
| Lastly, we evaluate to get
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}} & = &\displaystyle{\frac{3}{2}\bigg(\frac{3\pi}{4}\bigg)-\cos\bigg(\frac{3\pi}{2}\bigg)-\frac{\sin(3\pi)}{8}-\bigg[\frac{3}{2}\bigg(-\frac{\pi}{4}\bigg)-\cos\bigg(-\frac{\pi}{2}\bigg)-\frac{\sin(-\pi)}{8}\bigg]}\\ &&\\ & = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\ &&\\ & = & \displaystyle{\frac{3\pi}{2}.}\\ \end{array}}
|
| Final Answer:
|
| (a) See Step 1 above.
|
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3\pi}{2}}
|
Return to Sample Exam