Determine whether the following series converges or diverges.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}}
| Background Information:
|
| Recall:
|
- 1. Ratio Test Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum a_n}
be a series and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.}
Then,
|
- If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L<1,}
the series is absolutely convergent.
|
- If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L>1,}
the series is divergent.
|
- If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=1,}
the test is inconclusive.
|
- 2. If a series absolutely converges, then it also converges.
|
Solution:
| Step 1:
|
| We proceed using the ratio test.
|
| We have
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n!}{n!}\frac{n^n}{(n+1)^{n+1}}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n^n}{(n+1)(n+1)^n}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\bigg(\frac{n}{n+1}\bigg)^n\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n.}\\ \end{array}}
|
| Step 2:
|
| Now, we continue to calculate the limit from Step 1. We have
|

|
| Step 3:
|
Now, we need to calculate
|
| First, we write the limit as
|

|
| Now, we use L'Hopital's Rule to get
|

|
| Step 4:
|
| We go back to Step 2 and use the limit we calculated in Step 3.
|
| So, we have
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.}
|
| Thus, the series absolutely converges by the Ratio Test.
|
| Since the series absolutely converges, the series also converges.
|
| Final Answer:
|
| The series converges.
|
Return to Sample Exam