(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Find the following integrals
(a)
(b)
| Background Information:
|
| Through partial fraction decomposition, we can write the fraction
|
|
for some constants
|
Solution:
(a)
| Step 1:
|
| First, we factor the denominator to get
|
|
| We use the method of partial fraction decomposition.
|
| We let
|
|
If we multiply both sides of this equation by we get
|
|
| Step 2:
|
Now, if we let we get
|
If we let we get
|
| Therefore,
|
|
| Step 3:
|
| Now, we have
|
|
Now, we use -substitution.
|
Let
|
Then, and
|
| Hence, we have
|
|
(b)
| Step 1:
|
We begin by using -substitution.
|
Let
|
Then, and
|
| Also, we have
|
|
| Hence,
|
|
| Using all this information, we get
|
|
| Step 2:
|
| Now, we have
|
|
| Step 3:
|
| Now, for the remaining integral, we use partial fraction decomposition.
|
| Let
|
|
Then, we multiply this equation by to get
|
|
If we let we get
|
If we let we get
|
| Thus, we have
|
|
| Using this equation, we have
|
|
| Step 4:
|
To complete this integral, we need to use -substitution.
|
For the first integral, let
|
Then,
|
For the second integral, let
|
Then,
|
| Finally, we integrate to get
|
|
| Final Answer:
|
(a)
|
(b)
|
Return to Sample Exam