009B Sample Final 1, Problem 5 Detailed Solution
Revision as of 17:18, 2 December 2017 by Kayla Murray (talk | contribs) (Created page with "<span class="exam"> The region bounded by the parabola <math style="vertical-align: -4px">y=x^2</math> and the line <math style="vertical-align: -4px">y=2x</...")
The region bounded by the parabola and the line in the first quadrant is revolved about the -axis to generate a solid.
(a) Sketch the region bounded by the given functions and find their points of intersection.
(b) Set up the integral for the volume of the solid.
(c) Find the volume of the solid by computing the integral.
Background Information: |
---|
1. You can find the intersection points of two functions, say |
by setting and solving for |
2. The volume of a solid obtained by rotating an area around the -axis using cylindrical shells is given by |
where is the radius of the shells and is the height of the shells. |
Solution:
(a)
Step 1: |
---|
First, we sketch the region bounded by the given functions. |
Step 2: |
---|
Setting the equations equal, we have |
Solving for we get |
So, and |
If we plug these values into our functions, we get the intersection points |
and |
This intersection points can be seen in the graph shown in Step 1. |
(b)
Step 1: |
---|
We proceed using cylindrical shells. The radius of the shells is given by |
The height of the shells is given by |
Step 2: |
---|
So, the volume of the solid is |
|
(c)
Step 1: |
---|
We need to integrate |
|
Step 2: |
---|
We have |
|
Final Answer: |
---|
(a) (See Step 1 for the graph) |
(b) |
(c) |