009A Sample Final 1, Problem 10 Detailed Solution

From Grad Wiki
Revision as of 15:18, 2 December 2017 by Kayla Murray (talk | contribs) (Created page with "<span class="exam">If a resistor of  <math style="vertical-align: 0px">R</math>  ohms is connected across a battery of  <math style="vertical-align: 0px">E</mat...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

If a resistor of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R}   ohms is connected across a battery of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E}   volts with internal resistance  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r}   ohms, then the power (in watts) in the external resistor is

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P=\frac{E^2R}{(R+r)^2}.}

If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r}   are fixed but  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R}   varies, what is the maximum value of the power?


Background Information:  
Recall
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}}


Solution:

Step 1:  
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{1+x}{3x}.}
Using the limit definition of derivative, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\frac{1+(x+h)}{3(x+h)})-(\frac{1+x}{3x})}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\frac{1+x+h}{3x+3h})-(\frac{1+x}{h})}{h}.} \end{array}}
Step 2:  
Now, we get a common denominator for the fractions in the numerator.
Hence, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{\frac{(1+x+h)3x}{(3x+3h)(3x)}-\frac{(1+x)(3x+3h)}{(3x+3h)(3x)}}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{\frac{3x+3x^2+3xh-(3x+3h+3x^2+3hx)}{(3x+3h)(3x)}}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{-3h}{h(3x+3h)(3x)}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{-3}{(3x+3h)(3x)}}\\ &&\\ & = & \displaystyle{\frac{-3}{(3x)(3x)}}\\ & = & \displaystyle{-\frac{1}{3x^2}.} \end{array}}


Final Answer:  
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=-\frac{1}{3x^2}}

Return to Sample Exam