007B Sample Midterm 2, Problem 3 Detailed Solution
Revision as of 11:04, 30 November 2017 by Kayla Murray (talk | contribs) (Created page with "<span class="exam">The population density of a plant species is <math style="vertical-align: -5px">f(x)</math> individual per square meter, where <math style...")
The population density of a plant species is individual per square meter, where is the distance from the river, with for and for Construct a definite integral to calculate the number of plants along a section of the river of length
| Background Information: |
|---|
| 1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
Part 1 of the Fundamental Theorem of Calculus says that |
| 2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Part 2 of the Fundamental Theorem of Calculus says that |
| where is any antiderivative of |
Solution:
(a)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |
(b)
| Step 1: |
|---|
| Let |
| The problem is asking us to find |
| Let and |
| Then, |
| Step 2: |
|---|
| If we take the derivative of both sides of the last equation, |
| we get |
| by the Chain Rule. |
| Step 3: |
|---|
| Now, and |
| by the Fundamental Theorem of Calculus, Part 1. |
| Since |
| we have |
(c)
| Step 1: |
|---|
| Using the Fundamental Theorem of Calculus, Part 2, we have |
| Step 2: |
|---|
| So, we get |
| Final Answer: |
|---|
| (a) See solution above. |
| (b) |
| (c) |