009C Sample Midterm 3, Problem 5 Detailed Solution
Revision as of 11:49, 26 November 2017 by Kayla Murray (talk | contribs)
Find the radius of convergence and the interval of convergence of the series.
(a)
(b)
| Background Information: |
|---|
| Ratio Test |
| Let be a series and |
| Then, |
|
If the series is absolutely convergent. |
|
If the series is divergent. |
|
If the test is inconclusive. |
Solution:
(a)
| Step 1: |
|---|
| We first use the Ratio Test to determine the radius of convergence. |
| We have |
| Step 2: |
|---|
| The Ratio Test tells us this series is absolutely convergent if |
| Hence, the Radius of Convergence of this series is |
| Step 3: |
|---|
| Now, we need to determine the interval of convergence. |
| First, note that corresponds to the interval |
| To obtain the interval of convergence, we need to test the endpoints of this interval |
| for convergence since the Ratio Test is inconclusive when |
| Step 4: |
|---|
| First, let |
| Then, the series becomes |
| We note that for all |
| Hence, we can use the limit comparison test for this series. |
| Let and |
| Notice that for all |
| The series is a -series with So, diverges. |
| Now, |
|
|
| Therefore, the series diverges by the limit comparison test. |
| Hence, we do not include in the interval. |
| Step 5: |
|---|
| Now, let |
| Then, the series becomes |
| This is an alternating series. |
| Let . |
| First, we have |
| for all |
| The sequence is decreasing since |
| for all |
| Also, |
| Therefore, this series converges by the Alternating Series Test |
| and we include in our interval. |
| Step 6: |
|---|
| The interval of convergence is |
(b)
| Step 1: |
|---|
| We first use the Ratio Test to determine the radius of convergence. |
| We have |
|
|
| Step 2: |
|---|
| The Ratio Test tells us this series is absolutely convergent if |
| Hence, the Radius of Convergence of this series is |
| Step 3: |
|---|
| Now, we need to determine the interval of convergence. |
| First, note that corresponds to the interval |
| To obtain the interval of convergence, we need to test the endpoints of this interval |
| for convergence since the Ratio Test is inconclusive when |
| Step 4: |
|---|
| First, let |
| Then, the series becomes |
| This is an alternating series. |
| Let . |
| First, we have |
| for all |
| The sequence is decreasing since |
| for all |
| Also, |
| Therefore, this series converges by the Alternating Series Test |
| and we include in our interval. |
| Step 5: |
|---|
| Now, let |
| Then, the series becomes |
| First, we note that for all |
| Thus, we can use the Limit Comparison Test. |
| We compare this series with the series |
| which is the harmonic series and divergent. |
| Now, we have |
|
|
| Since this limit is a finite number greater than zero, |
| diverges by the Limit Comparison Test. |
| Therefore, we do not include in our interval. |
| Step 6: |
|---|
| The interval of convergence is |
| Final Answer: |
|---|
| (a) The radius of convergence is and the interval of convergence is |
| (b) The radius of convergence is and the interval of convergence is |