007A Sample Midterm 3, Problem 5 Detailed Solution

From Grad Wiki
Revision as of 15:30, 16 November 2017 by Kayla Murray (talk | contribs) (Created page with "<span class="exam"> At time  <math style="vertical-align: -4px">t,</math>  the position of a body moving along the  <math style="vertical-align: 0px">s-</math>a...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

At time  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t,}   the position of a body moving along the  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s-} axis is given by  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=t^3-6t^2+9t} (in meters and seconds).

(a)  Find the times when the velocity of the body is equal to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.}

(b)  Find the body's acceleration each time the velocity is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.}

(c)  Find the total distance traveled by the body from time  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=0}   second to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=2}   seconds.


Background Information:  
1. If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s}   is the position function of an object and
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v}   is the velocity function of that same object,
then   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=s'.}
2. If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v}   is the velocity function of an object and
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a}   is the acceleration function of that same object,
then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=v'.}


Solution:

(a)

Step 1:  
We begin by noticing that we plug in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0}   into
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x}{3-\sqrt{9-x}},}
we get   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{0}{0}.}
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the denominator.
Hence, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{x}{3-\sqrt{9-x}}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{x}{3-\sqrt{9-x}}\frac{(3+\sqrt{9-x})}{(3+\sqrt{9-x})}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{x(3+\sqrt{9-x})}{9-(9-x)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{x(3+\sqrt{9-x})}{x}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{3+\sqrt{9-x}}{1}}\\ &&\\ & = & \displaystyle{ \frac{3+\sqrt{9}}{1}}\\ &&\\ & = & \displaystyle{\frac{6}{1}}\\ &&\\ & = & \displaystyle{6.} \end{array}}

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow \pi} \frac{\sin (x)}{\pi-x}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \pi}\frac{\cos(x)}{-1}.} \end{array}}

Step 2:  
Now, we plug in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\pi}   to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow \pi} \frac{\sin (x)}{\pi-x}} & = & \displaystyle{\frac{\cos(\pi)}{-1}}\\ &&\\ & = & \displaystyle{\frac{-1}{-1}}\\ &&\\ & = & \displaystyle{1.} \end{array}}

(c)

Step 1:  
We begin by factoring the numerator and denominator. We have

       

So, we can cancel  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+2}   in the numerator and denominator. Thus, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}\,=\,\lim_{x\rightarrow -2}\frac{x-3}{x^2-2x+4}.}

Step 2:  
Now, we can just plug in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-2}   to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}} & = & \displaystyle{\frac{-2-3}{(-2)^2-2(-2)+4}}\\ &&\\ & = & \displaystyle{-\frac{5}{12}.} \end{array}}


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam