007A Sample Midterm 2, Problem 4 Detailed Solution

From Grad Wiki
Revision as of 21:28, 11 November 2017 by Kayla Murray (talk | contribs) (Created page with "<span class="exam"> Assume  <math style="vertical-align: -5px">N(t)</math>  denotes the size of a population at time  <math style="vertical-align: 0px">t</math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Assume    denotes the size of a population at time  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle t}   and that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N(t)}   satisfies the equation:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dN}{dt}=3N\bigg(1-\frac{N}{20}\bigg).}

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(N)=3N\bigg(1-\frac{N}{20}\bigg),~N\ge 0.}   Graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(N)}   as a function of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N}   and identify all equilibria. That is, all points where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dN}{dt}=0.}


Background Information:  
1. Product Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(x)g(x))=f(x)g'(x)+f'(x)g(x)}
2. Quotient Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}}
3. Chain Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)}


Solution:

(a)

Step 1:  
Using the Product Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=(x^3)(x^{\frac{4}{3}}-1)'+(x^3)'(x^{\frac{4}{3}}-1).}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{(x^3)(x^{\frac{4}{3}}-1)'+(x^3)'(x^{\frac{4}{3}}-1)}\\ &&\\ & = & \displaystyle{(x^3)\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1).} \end{array}}

(b)

Step 1:  
Using the Quotient Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{(1+6x)(x^3+x^{-3})'-(x^3+x^{-3})(1+6x)'}{(1+6x)^2}.}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{(1+6x)(x^3+x^{-3})'-(x^3+x^{-3})(1+6x)'}{(1+6x)^2}}\\ &&\\ & = & \displaystyle{\frac{(1+6x)(3x^2-3x^{-4})-(x^3+x^{-3})(6)}{(1+6x)^2}.} \end{array}}

(c)

Step 1:  
First, we write
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=(3x^2+5x-7)^{\frac{1}{2}}.}
Using the Chain Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{1}{2} (3x^2+5x-7)^{-\frac{1}{2}}(3x^2+5x-7)'.}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{2} (3x^2+5x-7)^{-\frac{1}{2}}(3x^2+5x-7)'}\\ &&\\ & = & \displaystyle{\frac{1}{2} (3x^2+5x-7)^{-\frac{1}{2}}(6x+5).} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=(x^3)\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1)}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{(1+6x)(3x^2-3x^{-4})-(x^3+x^{-3})(6)}{(1+6x)^2}}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{1}{2} (3x^2+5x-7)^{-\frac{1}{2}}(6x+5)}

Return to Sample Exam