031 Review Part 2, Problem 2

From Grad Wiki
Revision as of 13:13, 15 October 2017 by Kayla Murray (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?

Foundations:  
1.    is the number of pivots in  
2. A set of vectors    is linearly independent if
the only solution to    is the trivial solution.


Solution:

Step 1:  
We begin by putting these vectors together in a matrix. So, we have
Now, we row reduce this matrix. We get

       

Step 2:  
Now, we have 3 pivots in this matrix. So, the dimension of the column space of the matrix we started with is 3.
Hence, the dimension of the subspace spanned by these vectors is  
When we row reduced the matrix, we had a column that did not contain a pivot.
This means we have a free variable in the system corresponding to   
So, these vectors are not linearly independent.


Final Answer:  
       The dimension is    and the vectors are not linearly independent.

Return to Review Problems