031 Review Part 3, Problem 3
Revision as of 13:08, 13 October 2017 by Kayla Murray (talk | contribs)
Let
(a) Find a basis for the eigenspace(s) of
(b) Is the matrix diagonalizable? Explain.
Foundations: |
---|
Recall: |
1. The eigenvalues of a triangular matrix are the entries on the diagonal. |
2. By the Diagonalization Theorem, an matrix is diagonalizable |
if and only if has linearly independent eigenvectors. |
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |