031 Review Part 2, Problem 7
(a) Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T:\mathbb{R}^2\rightarrow \mathbb{R}^2} be a transformation given by
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T\bigg( \begin{bmatrix} x \\ y \end{bmatrix} \bigg)= \begin{bmatrix} 1-xy \\ x+y \end{bmatrix}.}
Determine whether Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is a linear transformation. Explain.
(b) Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 1 & -3 & 0 \\ -4 & 1 &1 \end{bmatrix}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B= \begin{bmatrix} 2 & 1\\ 1 & 0 \\ -1 & 1 \end{bmatrix}.} Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB,~BA^T} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A-B^T.}
| Foundations: |
|---|
| A map Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T:\mathbb{R}^n\rightarrow \mathbb{R}^m} is a linear transformation if |
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We claim that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is not a linear transformation. |
| Consider the vectors Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1\\ 0 \end{bmatrix}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 0\\ 1 \end{bmatrix}.} |
| Then, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{T\bigg(\begin{bmatrix} 1\\ 0 \end{bmatrix}+\begin{bmatrix} 0\\ 1 \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} 1\\ 1 \end{bmatrix}\bigg)}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 0\\ 2 \end{bmatrix}.} \end{array}} |
| Step 2: |
|---|
| On the other hand, notice |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{T\bigg(\begin{bmatrix} 1\\ 0 \end{bmatrix}\bigg)+T\bigg(\begin{bmatrix} 0\\ 1 \end{bmatrix}\bigg)} & = & \displaystyle{\begin{bmatrix} 1\\ 1 \end{bmatrix}+\begin{bmatrix} 1\\ 1 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 2\\ 2 \end{bmatrix}.} \end{array}} |
| So, now we know |
|
| Therefore, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is not a linear transformation. |
(b)
| Step 1: |
|---|
| Using the row-column rule for multiplication, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{AB} & = & \displaystyle{\begin{bmatrix} 1 & -3 & 0 \\ -4 & 1 &1 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 1 & 0 \\ -1 & 1 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 1(2)+-3(1)+0(-1) & 1(1)+-3(0)+0(1)\\ -4(2)+1(1)+1(-1) & -4(1)+1(0)+1(1) \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} -1 & 1\\ -8 & -3 \end{bmatrix}.} \end{array}} |
| Step 2: |
|---|
| Now, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^T} are both Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\times 2} matrices. |
| Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BA^T} is undefined. |
| Step 3: |
|---|
| For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A-B^T,} we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{A-B^T} & = & \displaystyle{\begin{bmatrix} 1 & -3 & 0 \\ -4 & 1 &1 \end{bmatrix}-\begin{bmatrix} 2 & 1 & -1\\ 1 & 0 & 1\\ \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} -1 & -4 & 1\\ -5 & 1 & 0 \end{bmatrix}.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is not a linear transformation |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB=\begin{bmatrix} -1 & 1\\ -8 & -3 \end{bmatrix},} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BA^T} is undefined and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A-B^T=\begin{bmatrix} -1 & -4 & 1\\ -5 & 1 & 0 \end{bmatrix}} |