031 Review Part 3, Problem 6

From Grad Wiki
Revision as of 21:05, 10 October 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

(a) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 2, then    is an eigenvector of    What is the corresponding eigenvalue?

(b) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 3 and    is invertible, then    is an eigenvector of    What is the corresponding eigenvalue?


Foundations:  
An eigenvector    of a matrix    corresponding to the eigenvalue    is a nonzero vector such that


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam