(a) Let T : R 2 → R 2 {\displaystyle T:\mathbb {R} ^{2}\rightarrow \mathbb {R} ^{2}} be a transformation given by
Determine whether T {\displaystyle T} is a linear transformation. Explain.
(b) Let A = [ 1 − 3 0 − 4 1 1 ] {\displaystyle A={\begin{bmatrix}1&-3&0\\-4&1&1\end{bmatrix}}} and B = [ 2 1 1 0 − 1 1 ] . {\displaystyle B={\begin{bmatrix}2&1\\1&0\\-1&1\end{bmatrix}}.} Find A B , B A T {\displaystyle AB,~BA^{T}} and A − B T . {\displaystyle A-B^{T}.}
Solution:
(a)
(b)
Return to Sample Exam