031 Review Part 3
This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
(a) Is the matrix Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A={\begin{bmatrix}3&1\\0&3\end{bmatrix}}} diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A={\begin{bmatrix}2&0&-2\\1&3&2\\0&0&3\end{bmatrix}}} diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
Problem 2
Find the eigenvalues and eigenvectors of the matrix
Problem 3
Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A={\begin{bmatrix}5&1\\0&5\end{bmatrix}}.}
(a) Find a basis for the eigenspace(s) of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A.}
(b) Is the matrix diagonalizable? Explain.
Problem 4
Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle W={\text{Span }}{\Bigg \{}{\begin{bmatrix}2\\0\\-1\\0\end{bmatrix}},{\begin{bmatrix}-3\\1\\0\\0\end{bmatrix}}{\Bigg \}}.} Is in Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle W^{\perp }?} Explain.
Problem 5
Find a formula for Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{bmatrix}1&-6\\2&-6\end{bmatrix}}^{k}} by diagonalizing the matrix.
Problem 6
(a) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 2, then is an eigenvector of What is the corresponding eigenvalue?
(b) Show that if Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\vec {y}}} is an eigenvector of the matrix corresponding to the eigenvalue 3 and is invertible, then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\vec {y}}} is an eigenvector of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A^{-1}.} What is the corresponding eigenvalue?
Problem 7
Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A={\begin{bmatrix}3&0&-1\\0&1&-3\\1&0&0\end{bmatrix}}{\begin{bmatrix}3&0&0\\0&4&0\\0&0&3\end{bmatrix}}{\begin{bmatrix}0&0&1\\-3&1&9\\-1&0&3\end{bmatrix}}.}
Use the Diagonalization Theorem to find the eigenvalues of and a basis for each eigenspace.
Problem 8
Give an example of a Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 3\times 3} matrix with eigenvalues 5,-1 and 3.
Problem 9
Assume Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A^{2}=I.} Find
Problem 10
Show that if is an eigenvector of the matrix product Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle AB} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle B{\vec {x}}\neq {\vec {0}},} then is an eigenvector of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle BA.}
Problem 11
Suppose Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \{{\vec {u}},{\vec {v}}\}} is a basis of the eigenspace corresponding to the eigenvalue 0 of a Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 5\times 5} matrix Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A.}
(a) Is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\vec {w}}={\vec {u}}-2{\vec {v}}} an eigenvector of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A?} If so, find the corresponding eigenvalue.
If not, explain why.
(b) Find the dimension of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{Col }}A.}