031 Review Problems
Revision as of 17:23, 24 August 2017 by Kayla Murray (talk | contribs)
This is a list of sample problems and is meant to represent the material usually covered in Math 31. An actual test may or may not be similar.
1. True or false: If all the entries of a matrix are then det must be
| Solution: |
|---|
| Final Answer: |
|---|
2. True or false: If a matrix is diagonalizable, then the matrix must be diagonalizable as well.
| Solution: |
|---|
| Final Answer: |
|---|
3. True or false: If is a matrix with characteristic equation then is diagonalizable.
| Solution: |
|---|
| Final Answer: |
|---|
4. True or false: If is invertible, then is diagonalizable.
| Solution: |
|---|
| Final Answer: |
|---|