009B Sample Final 1, Problem 6
Evaluate the improper integrals:
(a)
(b)
| Foundations: |
|---|
| 1. How could you write so that you can integrate? |
|
You can write |
| 2. How could you write |
|
The problem is that is not continuous at |
|
So, you can write |
| 3. How would you integrate |
|
You can use integration by parts. |
|
Let and |
Solution:
(a)
| Step 1: |
|---|
| First, we write |
| Now, we proceed using integration by parts. |
| Let and |
| Then, and |
| Thus, the integral becomes |
|
|
| Step 2: |
|---|
| For the remaining integral, we need to use -substitution. |
| Let Then, |
| Since the integral is a definite integral, we need to change the bounds of integration. |
| Plugging in our values into the equation we get |
| and |
| Thus, the integral becomes |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-\int_0^{-a}e^{u}~du}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}.\\ \end{array}} |
| Step 3: |
|---|
| Now, we evaluate to get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}.\\ \end{array}} |
| Using L'Hôpital's Rule, we get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\ &&\\ & = & \displaystyle{0+1}\\ &&\\ & = & \displaystyle{1}.\\ \end{array}} |
(b)
| Step 1: |
|---|
| First, we write Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_1^a\frac{dx}{\sqrt{4-x}}.} |
| Now, we proceed by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. |
| We let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=4-x.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-dx.} |
| Since the integral is a definite integral, we need to change the bounds of integration. |
| Plugging in our values into the equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=4-x,} we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1=4-1=3} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=4-a.} |
| Thus, the integral becomes |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^4 \frac{dx}{\sqrt{4-x}}\,=\,\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-1}{\sqrt{u}}~du.} |
| Step 2: |
|---|
| We integrate to get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^4 \frac{dx}{\sqrt{4-x}}} & = & \displaystyle{\lim_{a\rightarrow 4} -2u^{\frac{1}{2}}\bigg|_{3}^{4-a}}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\ &&\\ & = & \displaystyle{2\sqrt{3}}.\\ \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{3}} |