8A F11 Q14

From Grad Wiki
Revision as of 15:00, 6 April 2015 by Matt Lee (talk | contribs)
Jump to navigation Jump to search

Question: Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\sum_{n=1}^\infty 5\left(\frac{3}{5}\right)^n}}

Foundations
1) What type of series is this?
2) Which formula, on the back page of the exam, is relevant to this question?
3) In the formula there are some placeholder variables. What is the value of each placeholder?
Answer:
1) This series is geometric. The giveaway is there is a number raised to the nth power.
2) The desired formula is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_\infty = \frac{a_1}{1-r}}
3) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1} is the first term in the series, which is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5\frac{3}{5} = 3} . The value for r is the ratio between consecutive terms, which is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{5}}

Solution:

Step 1:
We start by identifying this series as a geometric series, and the desired formula for the sum being Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_\infty = \frac{a_1}{1 - r}} .
Step 2:
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1} is the first term in the series, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1 = 5\frac{3}{5} = 3} . The value for r is the ratio between consecutive terms, which is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{5}} .
Final Answer:
Plugging everything in we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_\infty = \frac{3}{1-\frac{3}{5}} = \frac{3}{\frac{2}{5}} = \frac{15}{2}}

Return to Sample Exam