Compute
(a) lim x → ∞ x − 1 + x 1 + 1 + x {\displaystyle \lim _{x\rightarrow \infty }{\frac {x^{-1}+x}{1+{\sqrt {1+x}}}}}
(b) lim x → 0 sin x cos x − 1 {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin x}{\cos x-1}}}
(c) lim x → 1 x 3 − 1 x 10 − 1 {\displaystyle \lim _{x\rightarrow 1}{\frac {x^{3}-1}{x^{10}-1}}}
If lim x → ∞ f ′ ( x ) g ′ ( x ) {\displaystyle \lim _{x\rightarrow \infty }{\frac {f'(x)}{g'(x)}}} is finite or ± ∞ , {\displaystyle \pm \infty ,}
then lim x → ∞ f ( x ) g ( x ) = lim x → ∞ f ′ ( x ) g ′ ( x ) . {\displaystyle \lim _{x\rightarrow \infty }{\frac {f(x)}{g(x)}}\,=\,\lim _{x\rightarrow \infty }{\frac {f'(x)}{g'(x)}}.}
Solution:
(a)
(b)
(c)
lim x → 1 x 3 − 1 x 10 − 1 = L ′ H lim x → 1 3 x 2 10 x 9 . {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 1}{\frac {x^{3}-1}{x^{10}-1}}}&{\overset {L'H}{=}}&\displaystyle {\lim _{x\rightarrow 1}{\frac {3x^{2}}{10x^{9}}}.}\end{array}}}
Return to Sample Exam