Let

(a) Find all local maximum and local minimum values of
find all intervals where
is increasing and all intervals where
is decreasing.
(b) Find all inflection points of the function
find all intervals where the function
is concave upward and all intervals where
is concave downward.
(c) Find all horizontal asymptotes of the graph
(d) Sketch the graph of
Foundations:
|
1. is increasing when and is decreasing when
|
2. The First Derivative Test tells us when we have a local maximum or local minimum.
|
3. is concave up when and is concave down when
|
4. Inflection points occur when
|
Solution:
(a)
Step 1:
|
We start by taking the derivative of
|
Using the Quotient Rule, we have
|
|
Now, we set
|
So, we have
|
Hence, we have and
|
So, these values of break up the number line into 3 intervals:
|
|
Step 2:
|
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
|
For
|
For
|
For
|
Thus, is increasing on and decreasing on
|
Step 3:
|
Using the First Derivative Test, has a local minimum at and a local maximum at
|
Thus, the local maximum and local minimum values of are
|
|
|
(b)
Step 1:
|
To find the intervals when the function is concave up or concave down, we need to find
|
We have
|
We set
|
So, we have Hence,
|
This value breaks up the number line into two intervals:
|
|
(c)
Step 1:
|
First, we note that the degree of the numerator is and
|
the degree of the denominator is
|
Step 2:
|
Since the degree of the denominator is greater than the degree of the numerator,
|
has a horizontal asymptote
|
|
Final Answer:
|
(a) is increasing on and decreasing on
|
The local maximum value of is and the local minimum value of is
|
(b)
|
(c)
|
(d) See above
|
Return to Sample Exam